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A recently developed model of random walks on aD-dimensional hyperspherical lattice, whereD is not
restricted to integer values, is used to study polymer growth near aD-dimensional attractive hyperspherical
boundary. The model determines the fractionP(k) of the polymer adsorbed on this boundary as a function of
the attractive potentialk for all values ofD. The adsorption fractionP(k) exhibits a second-order phase
transition with a universal, nontrivial scaling coefficient for 0,D,4, DÞ2, and exhibits a first-order phase
transition forD.4. At D54 there is a tricritical point with logarithmic scaling. This model reproduces earlier
results forD51 and 2, whereP(k) scales linearly and exponentially, respectively. A crossover transition that
depends on the radius of the adsorbing boundary is found.@S1063-651X~96!05806-0#

PACS number~s!: 05.40.1j, 05.20.2y, 05.50.1q

I. INTRODUCTION

In previous papers@1–4# we analyzed a class of models of
D-dimensional spherically symmetric random walks, where
D is not restricted to integer values. In Ref.@1# we intro-
duced the notion of spherically symmetric random walks and
in Ref. @2# we studied a simplified model of spherically sym-
metric random walks that is analytically tractable for all val-
ues ofD. In Ref. @3# we considered random walks that allow
for the creation and annihilation of random walkers and dem-
onstrated that these extended models exhibit critical behavior
as a function of the birth rate of walkers. In Ref.@4# we
summarized the results of this and the previous papers and
discuss the universality of the critical behavior using analyti-
cal methods and numerical calculations for different lattice
configurations. This critical behavior exhibits an interesting
dependence on the dimensionD. In this paper we apply these
ideas specifically to the study of polymer growth near a
D-dimensional hyperspherical adsorbing boundary@5#.

Polymers have inspired many experimental and theoreti-
cal investigations@6,7#. Because polymers are complex ob-
jects constructed from simple building blocks, they serve as
a laboratory for the development of scaling methods@8#,
renormalization-group theory@9#, and Monte Carlo simula-
tion @10#. Formulating simplified statistical models of poly-
mer growth is useful for understanding aspects of critical
phenomena exhibited by actual polymers. Polymer growth in
a disordered environment such as directed polymers in ran-
dom media~DPRM! is also used to describe phenomena
ranging from crack propagation to flux-line pinning in super-
conductors@11~a!#. Subtle effects for the adsorption transi-
tion arise when the disorder is confined to a random potential
on an adsorbing boundary@11~b!#, and extending the study
of these effects to dimensionsD.1 is of practical impor-
tance@11~a!,11~c!#.

The simplest polymer system is an unbranched chain of

monomers. Such systems are easy to model by means of
self-avoiding random walks@12,13#. In this paper, we exam-
ine such a polymer growing in the neighborhood of an at-
tractive D-dimensional hyperspherical boundary. Special

FIG. 1. Random walk on a lattice consisting of concentric cy-
lindrical surfaces of unit radii. Such a walk serves as model for a
polymer growing at an attractive cylindrical boundary such as a cell
membrane with radiusm ~thickened lines!. The polymer is initially
grafted to the boundary and is growing to the right. Every time a
monomer gets added at the boundary, the polymer gains in potential
energy by an amountk. The walk consists ofN526 monomer
links, but only L514 random steps were required because every
random step in the radial direction is followed by a deterministic
step in the axial direction. This requirement ensures that the random
walk advances exactly one unit in the axial direction for each ran-
dom step.
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cases of this polymer system have already been investigated
for planar (D51) @14# and cylindrical (D52) @15,16#
boundaries.

The spherically symmetric random-walk model intro-
duced in Ref.@1# was used in Ref.@15# to determine the
critical properties of a polymer growing near an attractive
D-dimensional hyperspherical boundary. However, that
model was mathematically intractable except forD51 and
2. Here we use the model of hyperspherical random walks
introduced in Ref.@2# to solve theD-dimensional polymer
growth model for arbitraryD.0. Specifically, we consider

an ensemble of polymers near an attractiveD-dimensional
hyperspherical boundary of radiusm, wherem>0 is mea-
sured in discrete monomer units. We derived the adsorption
fractionP(k) as a function of the attractive potentialk in the
limit where the average length of a polymer reaches infinity.
The parameterk is closely related to the birth ratea used in
Ref. @3#.

We find that if the attractive potentialk drops below a
critical valuekc , which in general depends onD, the adsorp-
tion fraction vanishes. Ask2kc→01 for fixed radiusm,
the asymptotic behavior ofP(k) is given by

P~k!;5
C1~D,m!~k2kc!

D/~22D ! ~0,D,2!

C2~2,m!~k2kc!
22 expF2

8

9~m11!~k2kc!
G ~D52!

C3~D,m!~k2kc!
~42D !/~D22! ~2,D,4!

C4~4,m!
1

ln~k2kc!
~D54!

C5~D,m! ~D.4!,

~1.1!

whereCi(D,m) are constants that depend on the dimension
D and the radiusm of the adsorbing boundary.

Equation~1.1! ceases to be valid asm→`. When

k2kc;
B~D !

m
, ~1.2!

whereB(D) is a constant of order 1, we observe acrossover
transition to linear scaling behavior inP(k) ask2kc→01.

In Sec. II we discuss the theory of polymer growth near
an attractiveD-dimensional spherically symmetric boundary.
In Sec. III we solve the eigenvalue problem that results from
a transfer-matrix description of this growth process. Finally,
in Sec. IV we determine for allD.0 the adsorption fraction
P(k) near the critical pointkc .

II. DIRECTED-WALK MODEL
FOR POLYMER ADSORPTION

We model polymer growth as a nonintersecting~directed!,
random walk in (D11)-dimensional space. This random
walk takes place on the union of a one-dimensional semi-
infinite lattice and aD-dimensional lattice consisting of a set
of concentric hyperspherical surfaces labeledSn . The hyper-
spherical surfaces are equally spaced in units of one mono-
mer length. The innermost surfaceSm , m>0, is the attrac-
tive boundary, which has a radius ofm in monomer units.
The next surfaceSm11 has a radius ofm11 and so on. The
extra axial dimension is introduced to ensure that the random
walk is nonintersecting; thus we are actually studying a
cylindrically-symmetric random walk inD11 dimensions.

At each step the random walker has a probability of mov-
ing one monomer unit radially outward, moving one mono-
mer unit radially inward, or staying on the same radial sur-
face. ~When the walker is on the boundary surfaceSm the

walker’s probability of moving inward is zero.! Regardless
of whether the walker moves radially or remains on the same
radial surface, we then require the walker to move one addi-
tional monomer unit in the axial direction in theD11 di-
mension. This deterministic axial motion guarantees that the
random walk will never cross itself.~A similar requirement
is imposed in restricted solid-on-solid models.! Hence, at
each step the polymer grows by adding either one or two
monomers, but always advances exactly one unit in the axial
direction. The growth of such a polymer is illustrated in Fig.
1 for the caseD52.

The dynamics of the polymer growth is regulated by a
balance between energy and entropy. There is one energy
associated with the addition of a new monomer and another
associated with adsorption on the attractive boundary. Each
addition of a monomer is characterized by a factor ofz and
each addition of a monomer on the attractive boundarySm is
associated with an additional factor ofk. The factork is
shown in Fig. 1, but the factor ofz is not indicated because
there is one such factor for each line segment~monomer!. As
the dimensionD increases there is a corresponding increase
in the available volume for the polymer to occupy as it grows
away from the adsorbing boundary. For any givenD this
configurational entropy balances the binding potential on the
attractive boundary. Thus one might anticipate that the criti-
cal properties of this system will vary in an interesting way
as a function of the curvature of the boundary.

While this random walk model is only a crude description
of an actual polymer growing in a continuum, one might
hope that the critical properties of the polymer system in the
infinite chain limit are universal and well approximated by
such a model.

We consider next the probabilities that define the radial
motion of the random walk. We have introduced a hyper-
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spherical lattice because spherical symmetry reduces a
D-dimensional problem to a one-dimensional problem. The
probability distribution of a spherically symmetric random
walk is described completely by a one-dimensional recursion
relation @1#. The coefficients in this recursion relation are
dependent on the location of the walker and express the ra-
dial bias ~or entropy! of the spherical geometry; that is, a
random walker tends to move outward rather than inward
because more volume is available in the outward direction
whenD.1. In Ref.@1# inward and outward walk probabili-
ties were proposed that express this radial bias. Unfortu-
nately, for arbitraryD, these probabilities are so complicated
that an analytical solution to the recursion relation is impos-
sible except for a few special values ofD.

In a recent paper@2# it was shown that the recursion re-
lation can be solved analytically for allD.0 by replacing
the outward and inward walk probabilities for regionSn with
a uniform approximation for alln. In Ref. @2# it was shown
that this simplified random walk exhibits the usual scaling
properties of a random walk model. For example, walks on
this lattice have a Hausdorff dimensionDH52. In compari-
son with random walks on other lattices, such as a hypercu-
bic lattice, the random walk model studied in this paper is
remarkable because it is analytically tractable. Numerical
and analytical studies in Ref.@3# suggest that, despite the
simplicity of the model, the nontrivial phenomena obtained
in this paper are indeed universal.

We represent the probabilities that define the random
walk considered in this paper byPstay(n), the probability that
a walker stays on the surfaceSn and just moves in the axial
direction,Pout(n), the probability that the walker moves out-
ward from the surfaceSn to the surfaceSn11 ~and then
moves in the axial direction on the surfaceSn11!, and
Pin(n), the probability that the walker moves inward from
the surfaceSn to the surfaceSn21 ~and then moves in the
axial direction on the surfaceSn21!. Generalizing the prob-
abilities used in Ref.@2# to include the possibility of staying
on the surfaceSn , we express therelativeprobabilities as

Pstay~n![1, Pin~n!5
2n

2n1D21
,

Pout~n!5
2~n1D21!

2n1D21
~n.m!. ~2.1!

Note that the walker is more likely to move outward asD
increases. However, asm increases withD held fixed, the
outward and inward probabilities become equal; this happens
because at large radius our nested spheres appear locally~on
the scale of a monomer length! to be equally spaced parallel
planes.

On the boundarySm we enforce the condition that the
walker is prohibited from moving inward by requiring that

Pstay~m!51, Pin~m!50, Pout~m!51. ~2.2!

The probabilities for the special one-dimensional case con-
sidered in Ref.@14# are obtained if we setD51 in Eqs.~2.1!
@17#.

A single random walk can represent only one of the many
configurations that a growing polymer can attain. To obtain

the critical properties of polymer growth at an attractive
boundary, we must investigate the average behavior of an
ensemble of walkers. Thus we derive a partition function for
random walks and use it to generate ensemble averages that
describe, for example, the fraction of a growing polymer that
is adsorbed on the boundary. From the above probabilities
and the parametersz and k associated with adding mono-
mers, we construct a transfer matrixTj ,i that expresses the
probability of the walker moving from thei th to the j th
surface at each step:

Tj ,i5zu j2 i ukdm, j@Pstay~ i !d j ,i1Pout~ i !d j21,i1Pin~ i !d j11,i #.

~2.3!

A particular polymer configuration generated by a random
walk consisting ofL steps is characterized by a set ofL
integers$hi% i51

L that specify the surfaceShi reached on the
i th step in the axial direction. The total statistical weight of
such a polymer is expressed as a product ofL elements of
the transfer matrix:

zLdm,h0Th1 ,h0Th2 ,h1•••ThL ,hL21
,

where the Kronecker delta ensures that the polymer is ini-
tially grafted to the boundary. The partition functionZL for
all polymers having axial lengthL is then

ZL5zLbW ~ t !TLeW ,

wherebW (t) and eW are vectors accounting for beginning and
end effects. HenceZ5( L51

` ZL , the total partition function
for configurations of all axial lengths, is given by

Z~z,k!5bW ~ t !zT~12zT!21eW . ~2.4!

Let lmax(k,z) be the largest eigenvalue of the transfer
matrix T and definez`(k) by

15z`~k!lmax@k,z`~k!#. ~2.5!

Letting Dz5z`(k)2z, note that the partition functionZ in
Eq. ~2.4! diverges asDz→01.

We can express the average length of a polymer in terms
of the partition functionZ:

^N~z,k!&5z
]

]z
ln Z~z,k!.

Similarly, the average number of monomers adsorbed on the
boundary is given by

^NSm
~z,k!&5k

]

]k
ln Z~z,k!.

As Dz→01, both ^N& and^NSm
& diverge; that is, the aver-

age length of a polymer chain diverges. In this paper we
study the fraction of adsorbed monomersP(k) as a function
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of the binding potentialk for an ensemble of polymers of all
possible lengths. The adsorption fraction is given by

P~k!5 lim
Dz→01

^NSm
~z,k!&

^N~z,k!&
52

k

z`~k!

dz̀ ~k!

dk
. ~2.6!

Note that the adsorption fractionP(k) is defined only on the
line z`(k) in the (k,z) plane.

III. EIGENVALUES OF THE TRANSFER MATRIX
FOR ARBITRARY D

In this section we obtain an eigenvalue condition whose
solution yields the spectruml of the transfer matrixT de-
fined in Eq.~2.3!. Inserting the probabilities in Eqs.~2.1! and
~2.2! into Eq. ~2.3!, we obtain the difference-equation eigen-
value problem@18#

lgn5 (
i5m11

`

Tn,igi55
gn12z

n1D22

2n1D23
gn2112z

n11,

2n1D11
gn11 ~n>m12!

gm111zgm12z
m12

2m1D13
gm12 ~n5m11!

kgm12kz
m11

2m1D11
gm11 ~n5m!.

~3.1!

This problem has a continuous spectrum for all values of
k, but the spectrum contains bound states only for a certain
range ofk. The continuous spectrum, and thus the value of
its upper limit, does not vary as a function ofk. If k is in a
range such that the upper limit of the continuous spectrum is
the largest eigenvalue of the transfer matrix, the adsorption
fraction as defined in Eq.~2.6! vanishes because, by the
chain rule, it is proportional to the derivative oflmax as a
function ofk. On the other hand, if the value ofk is such that
a bound state exists, the bound-state eigenvalue usuallydoes
vary as a function ofk and its value is larger than the upper
limit of the continuous spectrum, which leads to a nonvan-
ishing adsorption fraction. Thus the emergence of bound
states is the criterion for the appearance of an adsorbed phase
for the polymer.

In the Appendix we show that the eigenvalue condition
for the bound states of the eigenvalue problem Eqs.~3.1! is
given by

05
2m1D21

m 2F1Sm2 ,m11

2
;m1

D21

2
;e2D

1eA2F1Sm11

2
,
m

2
11;m1

D11

2
;e2D , ~3.2!

where we have defined

e5
2z

l21
, A5

m1D21

m F1k S 2e 1
1

zD2
1

zG2
2m1D21

me
.

~3.3!

Using z5z`(k) as defined in Eq.~2.5!, the eigenvalue con-
dition in ~3.2! yields an implicit relation forz`(k) and thus
we obtain the adsorption fractionP(k) as defined in Eq.
~2.6!.

IV. CRITICAL POINT ANALYSIS

The numerical value ofP(k) for any k can be obtained
from the implicit equation forz`(k). However, using as-
ymptotic analysis we can determine the behavior near the
critical point explicitly. We showed that the critical transition
is associated mathematically with the onset of bound states.
Thus the critical point is located ate51. Using@19#

2F1~a,b;c;x!5
G~c!G~c2a2b!

G~c2a!G~c2b!

3 2F1~a,b;a1b2c11;12x!

1~12x!c2a2b
G~c!G~a1b2c!

G~a!G~b!

3 2F1~c2a,c2b;c2a2b11;12x!,

we rewrite the eigenvalue condition~3.2! as

K
m11

m1D21 S 12e2

12 D D/221F 2F1Sm1D21

2
,
m1D22

2
;
D

2
;12e2D 1eA2F1Sm1D

2
,
m1D21

2
;
D

2
;12e2D G

5
m1D22

m 2F1Sm2 ,m11

2
;
42D

2
;12e2D 1eA2F1Sm11

2
,
m

2
11;

42D

2
;12e2D , ~4.1!
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with

K523D/221

GS 12
D

2 DG~m1D !

GSD221DG~m12!

. ~4.2!

Observe that the special cases of even integerD.2 require
special attention; we consider these special cases later. The
caseD52 has already been studied in Ref.@16# and will not
be discussed here.

We now substitute

z5z`~kc!2Dz ~Dz→01 !,

k5kc1Dk ~Dk→01 !.

We will determinekc later from asymptotic analysis of the
eigenvalue condition. However, usingeuz`(kc)

51 and
l51/z`(k) and the definition ofe in Eqs.~3.3!, it is easy to
determine that

z`~kc!5
1

2
.

Retaining terms to sufficient order for the subsequent analy-
sis,

e;126Dz1••• ,

A;
m1D21

m F S 4kc
232

m

m1D21D 2
4

kc
2 Dk

12S 8kc
2
8m15D25

m1D21 DDz1•••G ,
we obtain from the eigenvalue condition in~4.1!

A1BDk1CDz1•••;DzD/221~X1YDk1••• !,

~4.3!

where

A532
4

kc
2

D22

m1D21
,

B54
m1D21

~m11!kc
2 ,

C5
2

~m11!~42D ! F2~D21!~2D11!1m~28D213!

16m2~D15!19m32
4

kc
~m1D21!~3m219m

1D12!G ,
X5S 32

4

kc
DK,

Y5
4K

kc
2 ,

where,K is given in Eq.~4.3!.
In the following subsections, we determine the critical

point kc and the asymptotic relation betweenDz andDk by
balancing terms in Eq.~4.3! order by order in the limits
Dz→01, Dk→01. The asymptotic behavior of the adsorp-
tion transition near the critical point is then obtained from

P~k!;
kc

z`~kc!

dDz

dDk
. ~4.4!

A. Case 0<D<2

In this case we eliminate a divergent term in Eq.~4.3! by
imposing the conditionX50, which gives

kc5
4

3
. ~4.5!

To balance the terms in next order we demand that

A;YDzD/221Dk.

Thus we find that

Dz;SY
A

D 2/~22D !

Dk2/~22D !

and, according to Eq.~4.4!,

P~k!;
16

3~22D ! F9~m11!

4~22D !
KG2/~22D !

~k2kc!
D/~22D !

~k→kc
1!. ~4.6!

B. Case 2<D<4

Here, to balance the most dominant terms in Eq.~4.3!, we
setA50, which yields

kc5
4

32
D22

m1D21

. ~4.7!

Note thatkc in Eq. ~4.7! joins continuously onto the value of
4
3 in Eq. ~4.5! atD52 for allm, rises withD for D.2, and
levels off atkc52 asD→`. On the other hand, asm→`
for fixed D.2 we regain the value of the critical point for
D51.

To next order in the asymptotic analysis we obtain

Dz;SB
X

D 2/~D22!

Dk2/~D22!

or

P~k!;
16~m1D21!

~D22!~3m12D21! F ~3m12D21!2

4K~D22!~m11!G
2/~D22!

3~k2kc!
~42D !/~D22! ~k→kc

1!. ~4.8!
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C. CaseD>4

As in the preceding subsection we must setA50 and
obtain the same value forkc as in Eq.~4.7!. Higher-order
asymptotic analysis then gives

Dz;2
B

C
Dk.

Thus, to leading order the adsorption fraction is asymptoti-
cally a constant:

P~k!;
~D24!~3m12D21!

~2m1D !~3m12D25!
~k→kc

1!. ~4.9!

The discontinuity in the adsorption fraction across the criti-
cal point indicates a first-order phase transition.

The higher-order correction to this jump discontinuity is
given by a term of orderDk (D/2)22. This correction domi-
nates forD,6. WhenD>6, the dominant correction be-
comes a term of orderDk, scaling independently ofD. Note
that the jump discontinuity disappears asm→`.

D. Special caseD54

The caseD54 is special because here a line of first- and
second-order phase transitions meet. Our analysis must pro-
ceed somewhat differently because certain coefficients in Eq.
~4.3! diverge asD→4. To investigate this case we return to
Eq. ~3.2!, evaluated atD54, and use the relation~see for-
mula 15.3.11 in Ref.@19#!

2F1Sm2 ,m11

2
;m1

3

2
;e2D;

2m11G~m1 3
2 !

ApG~m12!

3@113m~m11!Dz ln Dz1O~Dz!#

and the relation obtained by shiftingm to m11.

The leading asymptotic contribution to the eigenvalue
condition in ~3.2! in this case is balanced when again

kc5
4

32
D22

m1D21
U
D54

5
4~m13!

3m17
.

The remaining terms to higher order are

Dk;2
24~m11!~m12!~m13!

~3m17!2
Dz ln Dz1O~Dz!.

Inverting this relation then yields

Dz;2
~3m17!2

24~m11!~m12!~m13!

Dk

ln Dk

3F 11OS ln ln
1

Dk

ln Dk
D G .

Finally, we obtain a logarithmic scaling relation for the ad-
sorption fraction

P~k!;2
3m17

3~m11!~m12!

1

ln~k2kc!
~k→kc

1!.

~4.10!

The behavior of the adsorption fraction is summarized in
Fig. 2, where we have plotted the adsorption fractionP(k)
for 0<D<6 and for 1.25<k<2 by solving numerically the
eigenvalue equation in~3.2!. In this plot we chosem50
because the critical phenomena derived in this section are
most prominent for small values of the radiusm.

FIG. 2. Plot of the adsorption
fraction P(k). For increasing
D,2 the scaling exponent in-
creases and the transition be-
comes weaker until forD52 ex-
ponential scaling is obtained. For
increasingD.2 the scaling ex-
ponent decreases and the transi-
tion itself becomes stronger
again, which is compensated for
by an increase in the critical
binding potentialkc that is re-
quired to bring about the transi-
tion. At D54 we observe a tric-
ritical point with logarithmic
scaling and forD.4 the transi-
tion is first order, indicated by a
discontinuity ~green shaded re-
gion! in P(k) across the critical
point.
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E. Crossover transition

In the limit of large radiusm we intuitively expect that the
attractive boundary will be effectively planar on the length
scale of monomer units. In this limit the asymptotic behavior
of the adsorption fraction near the critical point should thus
be linear. Hence, form@1 there must be acrossoverregion
such that the scaling coefficient obtained for the adsorption
fraction P(k) changes from being dimensionally dependent
and sensitive to the curvature of the boundary to the value 1,
which is obtained for the caseD51. To be precise, if we
allow the binding potential to vary in a small neighborhood
abovekc ,

k5kc1Dk ~Dk!1!

for some fixed radiusm@1, we find that the relations given
in Eqs. ~4.6!–~4.10! hold when Dk!1/m. However, for
1@Dk@1/m linear scaling is obtained. Consequently, the
crossover between these two regimes occurs for anyD.0
whenDk5O(1/m) ~aside from possible logarithmic correc-
tions for even integerD!, as stated in Eq.~1.2!.

To locate the crossover region analytically it is useful to
study the eigenvalue condition in~3.2! asymptotically in the
limits Dz!1, Dk!1, and 1/m!1. There are three distinct
cases to consider:~i! Dz@m22, ~ii ! Dz;m22, and ~iii !
Dz!m22. As was found in Ref.@16# for the particular case
D52, we find here that for allD.0 cases~i! and ~ii ! lead
immediately to linear scaling. For case~iii ! we find, to lead-
ing order, that

Dk;

8GSD2 D
311D/2GS 12

D

2 Dm ~m2Dz!12D/22
16

3D
mDz

~0,D,2! ~4.11!

and

Dk;

8GS 22
D

2 D
332D/2GSD221Dm ~m2Dz!D/2212

16

3~42D !
mDz

2
64

~D24!2~D26!
m3Dz2 ~D.2, DÞ4,6,...!.

~4.12!

For allD.0 we therefore find that theD-dependent scaling
relations derived in Secs. IV A–IV D hold for case~iii !. The
crossover transition happens when all the terms in Eqs.
~4.11! and ~4.12! are of equal order, that is, where case~iii !
borders on case~ii !. Hence the crossover occurs when
m2Dz5O(1), which verifies Eq.~1.2!.

ACKNOWLEDGMENTS

Two of us ~C.M.B. and P.N.M.! wish to thank the U.S.
Department of Energy for financial support under Grant No.
DE-FG02-91-ER40628. S.B. also thanks the U.S. Depart-

ment of Energy for support under Grant No. DE-AC02-76-
CH00016.

APPENDIX: CALCULATION
OF THE EIGENVALUE CONDITION

A bound state of Eqs.~3.1! must satisfy a condition en-
suring that the likelihood of finding the walker in remote
regionsn→` is diminishing sufficiently fast:

gn→0 ~n→`!. ~A1!

To find such a condition it is convenient to define

gn5H ~2n1D21!hn ~n.m!

2~m1D21!hm ~n5m!.

Then, Eqs.~3.1! reduce to

05~12l!~2n1D21!hn12z~n1D22!hn21

12z~n11!hn11 ~n.m!, ~A2!

supplemented by the boundary condition

05~k2l!~m1D21!hm1kz~m11!hm11 . ~A3!

To simplify the analysis of this problem, we define the
generating functions

G~x!5 (
n5m

`

gnx
n

and

H~x!5 (
n5m

`

hnx
n.

Using the identity

(
n

nxnhn5x
]

]x (
n

xnhn , ~A4!

G(x) can be formally obtained fromH(x):

G~x!52x
]

]x
H~x!1~D21!@H~x!1xmhm#. ~A5!

A differential form of the eigenvalue problem may now
be obtained by multiplying Eq.~A2! by xn and summing
from n5m11 to n5`. After shifting indices and applying
the identity in Eq.~A4!, we obtain

F ~12l!SD2112x
]

]xD12zxSD211x
]

]xD
12z

]

]xGH~x!

5F ~12l!~2m1D21!1m
2z

x Ghmxm
12z~m11!hm11x

m.
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We eliminatehm11 by applying the boundary condition in
Eq. ~A3! and divide both sides by 2z to obtain

Q2~x!H8~x!1~D21!Q~x!Q8~x!H~x!

5~11Ax!mhmx
m21, ~A6!

where we have defined

g5
1

e
~12A12e2!, Q~x!5A~x2g!~x21/g!

~A7!

andA ande are given in Eqs.~3.3!.
It is easy to solve Eq.~A6! because it is a linear first-order

differential equation. We multiply by the integrating factor
Q(x)D23 to get

@QD21~x!H~x!#85~11Ax!QD23~x!mhmx
m.

Requiring that

lim
x→0

x2mH~x!5hm

gives

H~x!5mhmQ
12D~x!E

0

x

dt tm21QD23~ t !~11At!.

Thus, from Eq.~A5! the generating functionG(x) is given
by

G~x!5~D21!mhmH xmF11
2~11Ax!

~D21!Q2~x!G
1

~12x2!

QD11~x!
E
0

x

dt tm21QD23~ t !~11At!J .
~A8!

The behavior ofgn asn→` is determined by the singu-
larities ofG(x). It is evident from the definition ofQ(x) in

Eqs.~A7! thatG(x) in general has singularities atx5g and
x51/g. If g is complex, theng51/g* and both singularities
are located on the unit circle. Thus condition~A1! cannot be
satisfied and there is no bound state. The largest value of the
transfer matrix is given by the upper limit of the continuous
spectrum,lmax~k!52. Hence the adsorption fraction vanishes
and the polymer is in the desorbed phase.

To obtain a nonzero adsorption fractionP(k) we must
find bound states in the spectruml. Bound states~discrete
values ofl! appear for values ofk andz such thatg is real
andg,1. We must eliminate growing solutions of the form
gn}g2n. This is accomplished by imposing the finiteness
condition

lim
x→g

uG~x!u,`.

A local analysis ofG(x) for x→g2 reveals thatG(x) is
finite at x5g if the following eigenvalue condition is satis-
fied:

05E
0

1

dt tm21~11Agt !@~12t !~12g2t !#~D23!/2.

~A9!

This integral is divergent forD<1 ~or forD<2 wheng51!.
Therefore, to study this integral for all values ofD we ob-
serve that when it converges it defines a hypergeometric
function 2F1(a,b;c;z) @19#. We then rely on the analytic
continuation provided by the hypergeometric function to re-
write Eq. ~A9! as

05
2m1D21

2m 2F1S 32D

2
,m;m1

D21

2
;g2D

1gA 2F1S 32D

2
,m11;m1

D11

2
;g2D .

Finally, we use the quadratic transformation formula for hy-
pergeometric functions 15.3.26 in Ref.@19# to obtain the
form of the eigenvalue condition given in Eq.~3.2!.
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